Офтоп
yNoSgq4acofn

Преподаватель американского университета задал студентам «жестокую» задачу

Преподаватель Мэрилендского университета Дилан Селтерман задал своим студентам задачу: «У вас есть возможность получить дополнительные баллы за экзамен. Выберите, сколько баллов вам добавить — шесть или два. Есть только одно условие: если более 10 процентов студентов выберут шесть, то никто не получит ни одного балла».

0
31 комментарий
Написать комментарий...
Бесплатный кавалер

Преподаватель Мэрилендского университета Дилан Селтерман задал своим студентам задачу: «Стоит два стула: на одном пики точеные....

Ответить
Развернуть ветку
Резкий мангал

Выберите, сколько — шесть или два.

Ответить
Развернуть ветку
Бесплатный кавалер

конечно же 6

Ответить
Развернуть ветку
Бесплатный кавалер

или 2

Ответить
Развернуть ветку
Медный браслет

Мне кажется какая-то не очень правильная логика у задачи. Человек, выбирающий 2, нечем не рискует, кроме возможности заработать 2 балла. В дилемме с заключённым же один из вариантов - когда эгоист получал все, а другой из-за этого все терял. Не очень понимаю какой в этой задачи смысл выбирать 6, однозначно выбрал бы 2. А вот в задаче с заключённым наверное склонился бы к более эгоистичному варианту, из за риска присесть на 10 лет.

Ответить
Развернуть ветку
Революционный Мика

Это тест на выявление крыс в коллективе

Ответить
Развернуть ветку
Медный браслет

Ну в тексте медузы проводят аналогию с дилеммой заключённого, и на мой взгляд между ними довольно большая разница.

Ответить
Развернуть ветку
Медный браслет

*ничем

Ответить
Развернуть ветку
Философский бинокль

Это тоже самое что и Дилемма заключенного.
Игрок, действующий рационально всегда выберет 6 очков вместо 2 очков.
Если все сделают рациональный выбор (6 очков) - все получат меньший профит, чем если бы все сделали нерациональный выбор (2 очка). В этом, условно, и заключается дилемма.
Тут она даже модернизирована из-за большего кол-ва участников.

Ответить
Развернуть ветку
Праздничный крюк
А вот в задаче с заключённым наверное склонился бы к более эгоистичному варианту, из за риска присесть на 10 лет.

Что бы Вы ни выбрали, Ваши шансы «присесть» на 10 лет никак не изменятся и составят ровно 50%. Тем не менее, что показательно, таким образом Вы нацелились на максимальный выигрыш (не сесть вовсе, чем сесть на два года, если сообщник тоже будет молчать), проявив эгоизм. Вот и студенты профессора Селтермана из года в год поступают также, несмотря на то, что шанс получить выигрыш (пусть и не максимальный, но все же), пожертвовав своими амбициями, в данном случае значительно выше, чем в задаче о дилемме заключенного.

Ответить
Развернуть ветку
Медный браслет

Эм, вообще то нет:

Если один дает показания на второго, то тот садится на 10 лет, а первый за сотрудничество со следствием освобождается от наказания. Если оба свидетельствуют против друг друга, то оба получают по два года.

Ответить
Развернуть ветку
Праздничный крюк

Насколько я помню, если оба дадут показания друг против друга, то оба получат по десятке. Но ведь Вы не знаете, как поступлю я, а я не знаю, как поступите Вы, таким образом, вероятность того, что мы оба сядем на десять лет сохранится и составит ровно 0,5.

Ответить
Развернуть ветку
Праздничный крюк

Ваша правда, не уточнил своевременно.

Ответить
Развернуть ветку
Уникальный волк

Тут не дилемма заключённого, а трагедия общин, суть которой в том, что быть пидорасом среди хороших людей выгодно и никто не страдает, но если пидорасов слишком много, то страдают все, включая самих пидорасов.

Ответить
Развернуть ветку
Кремлевский спрей

Комментарий недоступен

Ответить
Развернуть ветку
Постоянный огонь
Выберите, сколько баллов вам добавить — шесть или два.

Сначала подумала, что это будет что-то типа игры в Блэкджек)

Ответить
Развернуть ветку
Кадровый Валера
Ответить
Развернуть ветку
Уголовный турник

Мне кажется у нас прошло бы успешнее, очень развито стадное чувство "я как все"

Ответить
Развернуть ветку
Сельский завод

у нас бы все вслух договорились выбрать 2, а потом каждый втихаря выбрал бы 6

Ответить
Развернуть ветку
Командный ящик

Я правильно понимаю, что в чистых стратегиях Нэша тут нет?

Ответить
Развернуть ветку
Избирательный рак

Стратегия "выбрать 6" является weakly dominant.

Ответить
Развернуть ветку
Командный ящик

Да, у меня тоже так получилось. Но это если смотреть игру одного студента против остальных единодушных.

Ответить
Развернуть ветку
Избирательный рак

Конечно, за соседа по парте играть не получится :)

Ответить
Развернуть ветку
Командный ящик

Но если уж мы заговорили о симметричности равновесия, то ответ этого "одного студента" будет ответом всех студентов, т.к. эту игру играют все студенты. Таким образом, если я рационально выбираю 2, то все рационально выберут 2, и мы все получим 2. Если я рационально выбираю 6, то все рационально выберут 6, и мы все получим 0. Если сделать такое допущение, а мы его частично используем и в прошлых комментах, то тогда двойка строго доминирует шестерку для всех студентов, и тогда есть Нэш в чистых в двойке, что кажется бредом. Или нет?

Ответить
Развернуть ветку
Избирательный рак

В этом допущении ошибка

если я рационально выбираю 2, то все рационально выберут 2

Объяснять долго, почему, но вкратце: следуя такой логике в симметричных играх выбор осуществляется только по главной диагонали, что неверно, так как есть игры с равновесием в побочной диагонали.

Ответить
Развернуть ветку
Избирательный рак

ТЬфу, неправильно объяснил.
Суть в том, что 2 - не рационально. 2 рационально, если все последуют Вашему примеру (или хотя бы 90: последует). А так как все голосуют независимо, то 6 оптимально: если остальные голосуют 2 - у вас 6, если голосуют 6 - у всех 0.

Ответить
Развернуть ветку
Командный ящик

Это я понимаю. Логика не в том, что выбор осуществляется по главной диагонали, а в том, что если выбор из всего приведет к равновесному состоянию , то оно обязательно будет на главной диагонали, мне кажется, это можно доказать в общем виде.

Ответить
Развернуть ветку
Избирательный рак

Ну прям "жестокость" 80 левла.
Будут умняшами и/или сговорятся - получат по 2 балла к экзамену.
* да, в реальном мире можно найти попытку сговориться, не тюрьма ж

Ответить
Развернуть ветку
Командный ящик

Как показывает практика, договор не всегда помогает.

Ответить
Развернуть ветку
Достойный Данила
Преподаватель Мэрилендского университета Дилан Селтерман задал своим студентам задачу: ...

Саспенс.

Ответить
Развернуть ветку
Достойный Данила

На самом деле, просто хуёво новость написана. Профессора по всему миру задачи задают, новости здесь нет.

Ответить
Развернуть ветку
Читать все 31 комментарий
null